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Abstract. We study a variant of the Mandelbrot permlation process which is of current 
use as a model of aerogels. The model has two parameters: One of them, Q .  is the usual 
multiscale parameter of the Mandelbrot permlation p roms  and the other, p .  is a 
Bernoulli percolation parameter that is reserved for ‘the last step ofthe construction’. We 
investigate the phase diagram of this model in the ( Q , p )  plane. There are two phases, a 
sol phase and a gel phase. classified acmrding to whether a limit of crossing probabilities 
vanishes or is non-zero. In the sol phase. we define a correlation length via the rate of 
decay of a rescaled wnnectivily function. We show that this length scale diverges at the 
phase boundary. Furthermore, we demonstrate that if the phase boundary is approached 
with Q fixed and p tending up to its critical value, Po(Q), then, up to logarithmic 
corrections, the divergence is at least as fast as I Pc -pl-udH. where dH= 2 -  I log Q/log NI 
can be identified as the Hausdorff dimension of the background medium. 

1. Introduction and statement of results 

In this paper, we establish some basic properties of the phase diagram and correlation 
length for a variant of the Mandelbrot percolation process which we call the 
Mandelbrot aerogel. Here we will be concerned exclusively with the two-dimensional 
case. 

Aerogels are porous materials with pore sizes ranging from nanometers to microns 
[1,2]. (See [3] and [4] for reviews.) These materials seem to have a long-range- 
correlated, fractal type of randomness over at least two decades of length scales [SI, as 
well as independent randomness on a small scale. Motivated by this structure, a two- 
parameter Mandelbrot percolation model of aerogels was introduced [6]. This model 
may be loosely described as a Bernouilli percolation problem on the random sets 
generated in a Mandelbrot percolation process. 

Models of aerogels are of current interest due to the use of aerogels in a broad 
range of practical applications, e.g. insulating devices and solar collectors [4], as well 
as to theoretical questions raised by the recent experiments on the behaviour of 
supertluid helium in aerogel glasses [7-91. 

5 Work supported by the NSF under Grant +$ DMS 91-04487 and by the Alfred P Sloan Foundation. 
11 Work supported by the NSF under Grant !+ DMS W-09079 and by the Alfred P Sloan Foundation. 
7 Work supported by the NSF under Grant # DMR W-14366. 
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Let us begin with a brief review of the standard Mandelbrot percolation process 
described in [IO]; for simplicity of exposition, we will here confine attention to the 
two-dimensional case. The process is defined on the unit square [O, l]? which we 
denote by A,,. At the first stage, A,, is subdivided into N Z  smaller squares (cells) 

i-1 i k - 1  k 
s, I*' = [ - -  N ' N ] ' [ y ' Z ]  l s i , k s N  

with N 3 2 .  The smaller squares S,,k are independently retained (occupied) with 
probability Q or discarded (vacated) with probability (1-Q). The closure of the 
collection of retained squares constitutes the set A:. The set A Z c A I  is generated by 
repeating the previous construction (appropriately scaled) on all the surviving squares 
of A,. The process is iterated, so that at the nth stage, the squares being retained and 
discarded are of the form 

[i-1 - _  i lX[ , -1  _ _  k ]  
N" ' N "  N" ' N "  

l S i , k < N "  

and evidently are of scale N-".  The subject of interest is the limiting set 

A,= n A,. (1.1) 
n 

Most of the rigorous work on Mandelbrot percolation concerns the connectivity 
properties of this set. 

The phase structure and various other properties of the two-dimensional process 
were studied in [ll]. It was shown that, for fixed N 3 2 ,  as a function of Q, the limiting 
set undergoes several transitions, the most interesting of which is a percolation-like 
transition at some non-trivial Q , ( N ) .  This transition is signalled by the vanishing or 
non-vanishing of the 'crossing probability' 
e,(Q)=Prob(A, contains a path connecting the left and right sides of [0,1]'). 

In particular, for Q<Q,, O,(Q) is zero, while forrQ3 Q,, &(e) is (strictly) positive. 
It was also established in [ll] that, whenever there is positive probability that A. # 0, 
with conditional probability equal to one, the Hausdorff dimension of A, is the 
naively anticipated: d H = 2 -  llog Q/log NI. 

The Mandelbrot aerogel, at the nth stage, is defined by first running n - 1 
iterations of the Mandelbrot process with retention parameter Q (thereby obtaining 
some random set An-J, and then doing the nth iteration at retention parameterp. Of 
course this is equivalent to doing ordinary Bernoulli percolation at density p on the 
random subset of the N" x N" grid contained within A.-,. 

Unfortunately there is, in general, no obvious way to arrive at a limiting set for the 
Mandelbrot aerogel. Therefore, in this paper, we will be content to make probabilistic 
statements about the nth aerogels that hold uniformly in n. 

As usual, the questions of interest focus on the connectivity properties of the sets 
A,. (In this work, we define neighbouring cells to be cells which have an edge in 
common; this definition underlies the relevant notion of connectedness.) Of central 
importance will be the crossing probability: 
&(Q,p)=Prob(A,, contains an occupied path connecting the left and 

(1.2) 

right sides of [0,1Iz) (1.3) 
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where in the above (and henceforth whenever possible) we suppress all N dependence 
in our notation. Although we cannot, in general, assure the existence of an n + m  
limit for O.(Q,p), we can always define 

- O(Q, p) = lim inf 0, (Q, p). (1.4) 
n-m 

For those (Q,p) where it can be demonstrated that a limit actually exists-which 
turns out to be when e(Q,p) = O  andlor when p>Q-we will denote this limit by 
O(Q,p). We will declare the system to be in the gel phase ife(Q,p)>O; otherwise the 
system is an aerosolt. 

The results in section 1 concern the phase diagram of the Mandelbrot aerogels as a 
function ofp and Q. We first show, in proposition 2.1, that throughout the sol phase, 
the O.(Q,p) actually converge to zero. As a corollary to proposition 2.1, we 
demonstrate that e(Q,p) is discontinuous across the phase boundary. This is analo- 
gous to the situation in the ordinary Mandelbrot percolation process. In theorem 1.1, 
we describe most of the essential features of the phase diagram in terms of the 
transition thresholds, p .  and Q,, of the ordinary Bernoulli (site) and Mandelbrot 
percolation models. These features are illustrated in figure 1 (where the numbers in 
the figure correspond to the parts of theorem 1.1). For convenience, we state this 
theorem below, in its entirety. 

Theorem 1.1. Consider the (Q,p)-Mandelbot aerogel model with fixed parameter N: 
(1) If Q<Q.. the model is in the sol phase (O(Q,p)=O). 
(2) If p s p c  and Q <  1, the model is in the sol phase (O(Q, p) =O). 
(3) If p>pc, there exists Q <  1 so that the model is in the gel phase e(Q,p)>O). 

t It should be noted that although e ( Q , p )  distinguishes the disordered (sol) phase from the ordered (gel) 
phase by being non-zero only in the latter, it is almost certainly not an order parameter for this system. In 
particular, one would be hard pressed to produce a conjugate (ordering) field which couples linearly to 
!(Q,P).  
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(4) Ifpa Q ,  the h i t  of the crossing probabilities (O.(Q,p)) exists and is equal to the 
crossing probability O..,(Q) of the ordinary Mandelbrot process at retention 
parameter Q. In particular, i f p S Q a Q ,  the model is in thegel phase (O(Q,p)> 
0), so that the vertical line from (Q,, QJ to (Q,, 1) is part of the phase boundary. 

(5) For a Q>Q, ,  the phase boundary may be expressed as a monotone non- 
increasing function, p = P , ( Q ) ,  with P,(l)=p,. 
In section 2, we define two correlation lengths for the sol phase. Our first length, 

&(e, p ) ,  is a finite-size scaling correlation length of the sort described in [12]. Here we 
use the smallest scale where vacant cracks separating opposing sides of boxes are 
typically observed. It turns out that the proper units in which this length should be 
expressed are the microscopic units of the individual cells. Thus, if cracks ‘typically 
apear’ in An., the finite-size length is N”’. By fiat, this length scale diverges as the 
sol-gel phase boundary is approached. The second correlation length is defined via 
the connectivity function: if a and a+(& 0) are points in [0, 112, we denote by r!! the 
probability that, in the set A,,, these points are part of the same connected cluster. In 
the sol phase, as n + m ,  r$i tends to zero exponentially fast in the distance (as 
measured in microscopic units) between the two points. Thus we may write 

J T Chayes et a1 

where the existence of the limit implicit in equation (1.5) is established in lemma 3.1. 
Demonstrating the existence of & in fact constitutes the bulk of our efforts for this 
section; most of the proof of lemma 3.1 should be skimmed in a preliminary reading. 
We conclude section 2 with theorem 3.5 which is a straightforward demonstration of 
the ‘scaling equivalence’ of 5, and t2. In particular, if we are in the sol phase at the 
point ( Q , p )  with Q a Q , ,  and one of these lengths, 5,  exhibits critical scaling in the 
sense that the limit v ‘defined‘ by 

exists, then a similar limit also exists and also equals v for the other length. 
The results of section 3 concern the critical behaviour of the correlation length for 

the Mandelbrot aerogels. In [12] it was shown that in a d-dimensional system with 
independent disorder characterized by a (percolation-like) density parameter p ,  any 
appropriately defined finite-size scaling correlation length, &, which diverges as p 
approaches a critical p .  obeys the bound 

&constant Ip -p,l-2’d (1.7~) 

uniformly in a neighbourhood ofp,. Assuming that & ( p )  actually tends to infinity with 
a power law, &(p)--lp-pc1-”f, this implies the bound vf>2/d on the correlation 
length exponent. For percolation [13,14] and disordered king ferromagnets [15] it 
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was shown that, in the scaling sense, a finite-size scaling correlation length agrees with 
a fundamental correlation length t ( p ) ,  defined, e.g., via the decay rate of the 
connectivity or the two-point function. Hence, if these correlation lengths exhibit 
critical scaling, the critical index Y obeys the bound v 2 2 / d .  A Mandelbrot aerogel, 
when viewed in a certain light, is a percolation problem defined on a background of 
(fractal) dimension dH=2-llog QllogNlf. Hence if we are in the sol phase with 
Q 3 Q,, one might expect that asp  t Pc(Q), could enjoy a bound similar to the one 
in equation ( 1 . 7 ~ )  with d replaced by dH: 

E, aconstant Ip - Pcl-*'d~. (1.76) 

It turns out that this is indeed the case; this is the subject of theorem 4.2. As a 
corollary, we obtain the result that if a critical index vexists for the correlation length 
in the Mandelbrot aerogels then 

v 2 2/d+ (1.8) 

2. The phase diagram 

Let us begin with a preliminary bit of notation. We will assume that some value N22 
has been selected for once and all. Let us denote by A,c[O, 112 a configuration which 
might be observed after n iterations of the Mandelbrot process; explictly, A,, consists 
of an occupied subset of the tiling of the unit square by Nb square tiles of scale N - " .  

We denote by pQ (-) =.up,n(-) the usual Mandelbrot measure on the sets A, and by 
P ~ , ~ ~ ( - )  the appropriate aerogel measure where, as explained in the introduction, the 
nth iteration occurs with the retention probability p .  We shall denote by en the 
collection of configurations A. in which an edge-connected cluster of occupied cells 
contacts both the left boundary [[0} x [O, 11) and the right boundary ( [ 1 }  x [0,1]) of the 
unit square. Equation (1.3) may thus be succinctly expressed by 

while we will now define 

( 2 . 1 ~ )  

(2.16) 

so that the relevant measure is indicated by the argument of 0,. 
We start with an elementary result concerning the existence of various limiting 0's: 

Proposition 2.1. For all Q ,  

lim MQ) 
n-m 

exists and is (by definition) equal to f?,(Q). For any ( Q , p )  with Q < I ,  if e ( q , p )  is 
zero, then the full sequence (O,(Q,p)) converges to zero. 

tAlthough the backpound is itself a (multiscale) disordered medium, this fact will play no role in the 
correlation length bounds derived in this work. In this context, the additional disorder serves only to 
provide a minor annoyance which we dispense with in lemma 3.1. 
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Remark. The proofs of the above statements can be taken almost without modifica- 
tion from what is currently in the literature. However, to keep this note self- 
contained, we will provide the complete arguments. 

Proof. The quantities O.(Q) comprise a monotone decreasing sequence and hence 
converge. By definition 

J T Chayes et a1 

O.(Q)=p,( n On)= lim O.(Q). 
n ”+- 

Let us now turn attention to the more substantial issue. 

Suppose, then, that O.(Q,p) is small for some very large value of n. Let us 
consider two copies of the process placed side by side, so that the action is now taking 
place on [0,2] x [0,1]. Consider the event, B2.”, that the top boundary of this 
rectangle ( [0,2] x 11)) has been disconnected from the bottom ([0,2] x 10)) (figure 2). 
We claim that if n is sufficiently large, the fact that On(Q,p)91 implies that 
Prob(B,,,) =pQ,p ,n(Bz ,n)  is close to onet. 

Notice that the event 0:. implies that there is a top-bottom crossing of [0,1]* by a 
crack of vacancy. Let us now consider the rotation of this event by 90” so that the 
vacant crossing goes from left to right. We divide the right boundary of [0,1]2 into G 
equally sized segments where G is most easily visualized as N* and the relevant k 
should be regarded as small compared to n. 

Consider the event BY!, w = 1,2, . . . , G, that a vacant crack crosses from the left 
boundary of [O,l]’ and goes into (perhaps even subsuming) the wth segment on the 
right. A standard application of the Harris-FKG inequality shows that for some w’, 

Prob(Bki’) 2 1 - [l - On(Q,p)]”G. (2.2) 

t A similar assertion was made in 1111 where, in this context, it was stated that an analogue of the RSW 

lemma 116,171 holds for the Mandelbrot process. Although both of these facts are indeed correct. the 
derivation of the RSW lemma for Mandelbrot percolation found in the appendix of [I  I ]  is in error. A correct 
(albeit rather complicated) generalization of the RSW lemma which does work for these rystems can he 
found in [IR].  However, for the Mandelbrot-type systems, it is quite easy, following [ 191.111 uhtain long.way 
‘crossings of vacancy’ by pasting together short ones. This is the route we will follow here. l w o  of the 
authors (C and C) would like to thank R Meester for pointing out the difliculty in ow appcndix. 
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Now, let us imagine that in the [0,2] X [0,1] system, the event BY;] and its reflection 
across the line x= 1 have both occurred. This gives us two cracks, each crossing its 
respective square, which are almost touching at the midline. These cracks will connect 
to form a single large crack if any of the pairs of adjacent squares (one just to the left 
and one just to the right of the line x = 1) that include all of the w*th segment within 
their boundaries is vacant (i.e. both squares in the pair must be vacant). The 
probability that this happens at least once is 1 - (1 -(I - e)*)"-*. The three above- 
mentioned events are positively correlated and together produce the event Bz,a. 
Hence 

Prob(Bz,.)>(l - [O,(Q,p)]"c)z[l - (1 - (1 - Q)')'-?. (2.3) 
It is seen in equation (2.3) that as 0. gets small, one is permitted to use large values of 
G and hence large values of n - k. This drives the estimate on Prob(B2..) to one. 

Now let m be large compared with some n for which Prob(Bz,) is close to one. We 
will temporarily consider the unit scale to be the smallest squares and work our way 
upward to the full N " x N "  lattice: We first 'vacate' unit squares with probability 
(1 - p ) ,  then group the squares into blocks of scale N, which (regardless of the interior 
pattern) become 'vacated' with probability (1 - Q), etc. Having done this n times, we 
now have Nz("-") independent arenas where events such as 0. may succeed or fail. At 
this point, we may assume the worst case scenario (from the perspective the cracks) 
that between the nth and mth stages of this process none of the large-scale vacancy 
events occur. Even so, the If2,* events enjoy a rescaling-type lemma (see, for example 
[14]) which demonstrates that the Prob(B1,,+k) get driven to unity rapidly with k, and 
hence that O,+O. Indeed, this occurs exponentially fast in the size of the block as 
measured in the above-mentioned unit scale. 0 

From the above arguments, we see that whenever any individual O,(Q,p) is small, 
the whole sequence gets driven to zero. This gives us the following: 

Corollary. @(Q,p)  is discontinuous across the phase boundary. 

Proof. For Q<I ,  this statement follows immediately from the preceding deriva- 
tion. Along the line Q = 1, which contains the endpoint of the phase boundary, (l,pc), 
the situation is well understood: here the problem amounts to site percolation 
orchestrated in larger and larger boxes. The classic results of [16], [17], etc. (see [ZO]) 
tell us that O.(l ,p)+O ifp<p,, On(l,p)+l ifp>p, and that On(l,pJ is uniformly 
bounded away from 0 and 1. 0 

We now tend to the central business of this section. 

Proofoftheorem 1.1. (1) and (4): For allp, it is clear that 

( 2 . 4 ~ )  

0. (Q,p) MQ).  (2.4b) 

Hence the limit exists and is zero when Q<Q,, while if p a Q ,  the O.(Q,p) converge 

(2) Supposep<p,. We may. as in the proof of the preceding proposition, start on 
an N" x N" lattice and work our way outwards. The first step of the process looks like 

to O,(Q). 
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ordinary site percolation, and hence, since p<p., the event 0. is immediately 
destroyed with probability tending rapidly to 1. 

For p =p. and Q < 1, we need consider only the first two steps of this outward- 
going process. Indeed, we may consider instead the following related percolation 
problem on the N ” x  N “  sized square: Grouping the sites into N x  N blocks, we will 
declare that any site is ‘absent’ if it is lost on the first step. However, those siteson the 
lower left corners of their respective blocks (and only those ones) will, in addition, be 
deemed absent if the whole block is lost on the second stage. Otherwise, sites will be 
deemed ‘present’. Thus, in this problem, NZ-1 sits in each block are present with 
probability p,  but the comer one only has density p(1- Q). This is a classic setup for 
‘filing Kesten Ch. 10’; explicitly, if Q< 1, this system is subcritical at p=pc [20]. See 
also the modem version of such arguments in [21]. Hence, for these parameter values, 
the probability of a connected ‘present’ crossing tends rapidly to zero with n, and the 
lack of such a crossing obviously implies that 0. is destroyed in the (first two stages of 
the) aerogel system. 

(3) We will again construct a system for comparison; this time, it will be a large4 
Mandelbrot percolation process. It is known that as Ngets large, the threshold values 
Qc(N) approach pc, the threshold of ordinary site percolation [Z]. Suppose that 
p >pc.  Let us find a K such that Q c ( M )  <p whenever M 3  K. Let k denote the smallest 
integer for which N k > K .  Our comparison will have block groupsof scale Nk. We may 
again envision working outward: first, at density p, we do the percolation step. Then, 
the next k steps of the aerogel process amount to a single step in the comparison 
process. We say that the big block is lost unless all k scales in the aerogel problem are 
completely retained. The probability of this is no less than QLq which, by insisting Q 
is close to unity, may now be assumed to exceed p .  This comparison automatically 
establishes a subsequence of O.(Q,p)’s, occurring each kth iteration, that are 
bounded below by the limiting 0&) of the Mandelbrot process with N2 subdivisions. 
Evidently, by the (contrapositive of) proposition 2.1, this establishes (3). In fact, it is 
not difficult to see that the enfire sequence is bounded below by p R  times the 
above-mentioned limiting 0. 

We make a few final observations which constitute a proof of statement (5): The 
existence of a Pc(Q) is a tautology; the monotone properties of such a function follow 
from FKG-type considerations. It is also clear from items (2) and (3) that 

J T Chayes et a1 

lim P d Q )  =P. (2.5) 
Q-1 

and it has already been observed that Pc(l) =p.. 0 

Remarks. The only qualitative features that we have failed to establish are (a) 
whether or not Pc(Q) is strictfy monotone; (b) where the phase boundary separates 
from the line Q = Q, (i.e. what is Pc(Q.)?); and (c) the existence and behaviour of a 
limiting O(Q,p). Our comments and speculations are as follows: (a) Pc is most likely 
to be a strictly monotone function; (b) there is no compelling reason to believe that 
Pc(QJ= Q, (this is deliberately obscure in figure 1); and, along these l i e s  (c) we 
have some reason to believe that inside the phase boundary, O(Q,p)=O(Q). The 
evidence supporting such an assertion is statement (4) of theorem 1.1 (i.e. that this 
occurs in the triangle p 2 Q 3 Q,) and the fact that this is precisely what happens along 
the line Q= 1. We do not have any intuition about the continuity of O(Q,p)-should 
it exist-as the phase boundary is approached from the gel phase. On the one hand, as 
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Q .1 Q, when p >  Qc. the system behaves like ordinary Mandelbrot percolation and 
hence B is upper semicontinuous [ll].  However. when p < Q ,  the argument proving 
semicontinuity fails and this may, perhaps, be more than a technicality. Indeed, as 
noted in the corollary to propositon 2.1,0(l.p) is discontinuous as the pase boundary 
is approached from either side. Thus the question of continuity asp .1 P c ( Q )  remains 
open. 

3. The correlation length 

We will assume throughout this section that Q> Q, andpCPc(Q). Since, at present, 
we are dealing with a sequence of models each of which possesses only finitely many 
degrees of freedon, the correct choice of a correlation length is not readily apparent. 
Here we will propose two candidates for the correlation length of Mandelbrot 
aerogels and then demonstrate the scaling equivalence of these quantities: explictly, 
we will show that these quantities diverge as p t Pc(Q) ,  and they undergo these 
divergences in such a way that the ratio of their logarithms tends to unity. 

Correlation length 1. Consider, as in proposition 2.1, a black of several indepen- 
dent copies of the Mandelbrot aerogel process. This time, it will prove convenient to 
use a 3 x 1 box, i.e. [0,3] x [0,1]. Denote, as before, by B3." the event that the top of 
the box has been disconnected from the bottom. Let 6 be a reasonably small number 
of order unity-e.g. any G<$is sufficient. If p < P c ( Q ) ,  we know that 

l i  Prob(B3,.) = 1. 
"-m 

Let nip denote the smallest integer such that 

Prob(B3,,.)31 -6. (3.1) 
Our first correlation length is determined by this n": It is simply the linear dimension 
of the box, measured on the scale of the (current) lattice spacing. We define 

E ,  = N"'. (3.2) 
Remark. The crucial feature of the condition Prob(B3,,)>1-6 is that it is the 
hypothesis of a rescaling lemma obeyed by the quantity Prob(B,,.). Such a rescaling 
lemma leads, in turn, to the consequences observed in the proof of proposition 2.1. It 
follows immediately that ifpaPC, then Prob(B3..)G1 -6 for all n, and hence that n* 
is infinite. Divergence of the length scale N"' as p f Pc is easily demonstrated by 
continuity. An oflicial proof of these assertions will appear in theorem 3.5. 

Correlation length 2. Let us temporarily regard the n th stage aerogel as an N" x N" 
grid, most of which is vacant. If a and b are points in [0, l]', we will denote by rkb the 
probability that, in the nth stage aerogel, the cell (or cells) containing a and b belong 
to the same connected cluster. For present purposes, the case in which a and b differ 
only in a single coordinate is of sufficient generality. We will give this connectivity a 
special designation: 
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Our second correlation length is the rate at which these probabilities tend to zero, 
measured in units of the cell size: 

J T Chayes et a1 

$!-exp[ -sNn/C2]. (3.4) 
Of course later we are going to have to be a bit more precise, but for now we will write 
down the definition 

(3.5) 

The existence of the above limit independent of s and a will be the subject of lemma 
3.1. 

We are now prepared to establish the existence, equivalence and critical diver- 
gence of these length scales. Our first goal is the result: 

Lemmu3.1. F o r a n y ~ E ( O , l ) ~ a n d s E ( - - l ,  + l )wi thu+(s ,O)~(O, l )~ ,  thelimit 

1 log$; 
-lim- sn-- N" 

exists independent of a and s. 

Our starting point will be a slightly different type of correlation which is interme- 
diate between the connectivities leading to 5, and We consider three copies of the 
n th stage aerogel placed alongside one another. If a is one of the 3N" sites on the top 
([0,3] x 11)) and 6 is a site on the bottom, we define GgL to be the probability that a is 
in the connected cluster of b and 

G(")-max Ggl. (3.6) 
1) 

The following is readily established: 

Proposition 3.2. The h i t  

exists. Furthermore, for any finite n 

Proof. Suppose, for the nth stage problem, that a* and 6* are the sites which 
maximize G!:b: 

G$!b.=G(n). (3.7) 
If N scaled-down translations and reflections of the event leading to G$!b. are pasted 
together, one above the other, then there is a scaled-down connection in the N x 3 box 
(figure 3(a)). This almost suffices to produce a connection of the desired type in the 
(n+ 1)th stage aerogel (in the left part of the scaled down N x 3 N  box). What is 
lacking is the assurance that this connection does not get 'blocked out' on (what is 
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Figure3. (U )  N=4copies of the event G$&.; (b) const~ctioo of S!.]. 

currently) the first stage. However, this difficulty can be prevented by a 'plating factor' 
at the meagre cost of Q3". Thus one obtains, for particular sites A and E :  

GfL1) 2 Q3N[G(n)]N (3.8) 

so that 

After k iterations of the above reasoning 

where V k = 3 N [ N X -  l ] / [ N -  11s3Nk+'.  Equation (3.10) leads to a subadditive 
0 inequality that easily implies the desired results. 

Now let us consider the lattice Z* where each site has been endowed with an 
independent copy of an nth stage aerogel at parameter values p and Q. We will 
assume, for simplicity that Nis  odd. Notice that this model is Z2 translation invariant 
(or, from the perspective of the unit cells, invariant under translations whose xI and x2 
components are integer multiples of N"). 

For x and y in P, we define 32; to be the event that there is a connection between 
the centers of the squares located at x and y and 

T$i= Prob(5:;). (3.11) 

If x and y differ in only a single coordinate, we will abbreviate our notation: e.g. if 
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x=O and y=(r ,O) ,  we will call the corresponding probability T?. The following 
proposition is readily verified: 

Proposition 3.3. The limit 

J T Chayes et a1 

log TP) 
Iim - 
).-- r 

exists and, denoting this limit by -xn ,  the limit 

x" 
p= lim - 

n-D) N" 

also exists. Furthermore 
TP)<e-%' 

and 

Proof. The T functions are manifestly log superadditive, that is 
T 2 + = T p T y  (3.12) 

which immediately gives us our first result along with the corresponding a priori 
estimate. Furthermore, it is not hard to see that 

Tt!3T?+l) (3.13) 
0 

We now hegin the final leg of our demonstration of the equivalence of length 

from which the other results follow. 

scales. 

Proposition 3.4. The quantities a and p are equal. 

Proof. We start with the straightforward result a z p .  Indeed, pick any n and locate 
the Q and b such that Gg\= G"' .  By putting together r -2  translations and reflections 
of the event of a connection between points a and b, we have, modulo contact at the 
end points, produced the event F?' (figure 3(b)). 

Thus, we may write 

T P ) ~  Vz[GWy-z (3.15a) 
where, if hard pressed, we can pay the absurdly inflated price 

V>pN"QN"-' . . . Q N  

From equation (3.15a), we readily obtain 

(3.15b) 
to ensure the perfect status of the blocks at the beginning and end. 

IC. S llog G'"'I (3.16) 
and hence 

p<a. (3.17) 
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As a preliminary step in the proof of the opposite inequality, we introduce the 
connectivity event @ which means that there is a connection between (0,O) and 
(r, 0) via a path which lies in the strip O s x ,  s rt. We denote by T!.)Il the corresponding 
probability. It is completely straightforward to show that the limit of -r-'log T!." 
exists. It is, in fact, relatively easy to show that this limit is precisely K". Proofs of this 
sort of thing have appeared several times before in the literature [14]. However, for 
the sake of completeness, we will offer the following slight variant of the standard 
fare. 

Denote by Tp):kc9?) the event of the desired connection taking place in the 
region - k < x , S r +  k, with the usual notation for the corresponding probability. Let 
q> 1 and observe that while 

(3.18) 

(3.19) 

(3.20) 

Obviously the right hand side converges to - m-' log T?), after which we can calmly 
take the m + m  limit. 

Finally, we will introduce one more correlation function, namely T!.)" that, in 
addition to the restrictions which define TY)l1, has the further requirement that the 
connection takes place in the region - r/2<x2S + r/2. The above correlation function 
has leading-order asymptotic behaviour identical to all the others; we will omit an 
explicit proof of this since similar topics have been adequately treated elsewhere [U]. 

In the next few paragraphs, we will use a coarse-graining argument to show that 
whenever the event $"I occurs, the connecting path is not teribly long. Let us denote 
by X&") the sites of b2 which are connected to the origin by an underlying path of 
connected cells and by IX$"l the number of sites in Y@. Observe that the sites in 3@) 
themselves form a connected cluster. We claim that for D >  1 

(3.21) 
with un>O if a>O and n is sufficiently large. (If a=O, the equality of a a n d p  is 
assured by equation (3.17).) 

To prove (3.21), consider a block of the nth stage aerogels organized into a 3 X 3 
square block. We will say that there has been a visirarion whenever there is a 
connection between a site in the inner square and the outer boundary of the block. 
Denote by V(") the probability of a visitation. Note that a visitation is prevented if the 
four 3 x 1 rectangles surrounding the central square each have a long-way vacant 
crossing. Thus 

v(")<&("). (3.22) 
Consider, now, the event that 1Xp)1>D. It is clear that for D big enough, the 

existence of such a connection necessarily implies the occurrence of some D distinct 
visitation events. Furthermore, the D 'sites' that get visited form a connected 

t Since N and r are no- cnmmensurate. it may be that some of the relevant occupied klls are 
partially outside this strip. 

Prob(lX&") I >D) s (constant) 
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cluster-although not necessarily a connected path. Unfortunately, these visitations 
events are not all independent. However, it is straightforward to show, as in the classic 
arguments of Russo [16], that at least 4 of the events are mutually independent. 

Indeed, if we tile the lattice with our 3 x 3 blocks, it is clear that any visitation 
events to the centers of distinct blocks are mutually independent. There are nine 
different ways that the lattice can be tiled; in at least one of these tilings, out of the 
total of D possible visitation events, as many as D19 occur at the centres of the blocks. 
Hence, we may estimate 

J T Chayes et ai 

Prob(lY$"l>DS VK[4G("Ig9 (3.W 
KLD 

where V ,  is the number of distinct connected clusters of size D that contain the origin. 

V D  - e',. (3.24) 
Since we are assuming that Q is positive, we will take n large enough to ensure that 

It is well known that, to leading order, V D  grows exponentially fast: 

e - % ~ e ~ [ 4 G ( " ) ] " ~ <  1. (3.25) 
Now, summing over all KaD, we obtain the claim made in equation (3.21). 

With the above in mind, we may now take ' D  = Ar with A sufficiently large, and 
observe that the events F!") and n { IYC$")l S Ar} have essentially the same prob- 
ability. Let us use this to construct the desired type of crossing. 

We shall divide N" into two scales: n = k + (n - k) where both k and n are to be 
considered large. Looking at the square, with the origin of coordinates conveniently 
placed on the midpoint of the left side, let us allow, starting first at the smallest scales, 
n- k iterations of the process. At this point, the probability of observing a left-right 
crossing which connects the midpoints is exactly T$Lk)'. (Recall the definition of T!")' 
from between equation (3.20) and (3.21).) However, we will make the somewhat 
more restrictive assumption that the event 

(3.26) A,,= firk)' n {lsCp-')I S A N 3  
has occurred, where A has been chosen large enough to ensure 

Prob(A,,) &cflrk)' (3.27) 
for some number c which is of order unity. (Note that in amving at equation (3.27) we 
cannot-and do not-make use of correlation inequalities. Indeed, (3.27) is easily 
obtained by inclusion-exclusion.) 

Next, we will consider the event &CA,, which requires that in addition to A,,, on 
the (n-k+l)th iteration, none of the squares (of scale A'"-*) in 'the connected 
component of the origin' are lost. This event obviously has conditional probability 
Q ~ x ~ ~ 2 Q A N ' .  Continuing, we consider the event AZcA1, which further requires that 
none of the blocks of scale N"-'+' that contain the previously mentioned blocks are 
lost on the next (i.e. (n-k+2)th) iteration. The conditional probability of A2 is 
clearly Q raised to the power of the required number of blocks (i.e. the number of 
blocks which must be retained). 

Obviously, this 'required number of blocks' lies somewhere between lY@-')I and 
IY@-')I/N'; furthermore, these blocks comprise a connected cluster in their own right. 
We claim that there is a numberfstrictly less than unity such that, no matter what 
shape the cluster assumes-provided that it is big enough-no more thanfl%-')I 
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blocks will be required. A proof of this (intuitively obvious) geometrical fact is 
relegated to the appendix. Explicitly then, we obtain the estimate 

(3.28) 
In the same fashion as the second stage, we work our way up to the kth stage (i.e. 

the nth iteration). At the (n-k+j)th level, we define the event which 
requires that none of the blocks that were used to construct the event on the previous 
scale get lost on the present iteration. In other words, the entirety of XF-') is retained 
in the current iteration. Until, perhaps, j is a few less than k, the conditional 
probability may be estimated: 

Prob(AilA,-,)> QfIMk. (3.29) 

It is also seen that the event Ak contains the desired sort of connection. Hence we 
finally arrive at 

G(n)2a[T$;"n] e-ANk (3.30) 

where a and A are constants of order unity. Taking the log of both sides of equation 
(3.30), and defining b=n-k ,  we get, as n and k go to infinity with b k e d ,  

A Kb as-+-, N b  N b  (3.31) 

The desired result is now established if we let b - m . U 
In a fashion quite similar to the preceding proof, we obtain: 

Pruofof Lemma 3.1. Let a and u+(s, 0) be points in (0, I)*, and suppose that in the 
nth stage aerogel there is a connection between these points. We may again write 
n = b + k and regard the unit square as being tiled with kth stage aerogels destined to 
experience some disturbances at larger scales. From this perspective, the above- 
mentioned connection implies an event similar to Y$b, the only differences being (a) 
the necessity of ensuring that contact has occurred between the centres of the relevant 
squares, (b) the fact that the separation between the relevant squares may differ from 
sNb by one or two units, (c) interference from events of scale larger than N X  and (d) 
the fact that the connection is ostensibly hampered by the necessity of staying inside 
the (unit) square. For the purposes of a lower bound, items (c) and (d) can be ignored. 
We obtain 

(3.32) 
where the prefactor on the RHS accounts for item (a) and Hbis a number which differs 
from N k  by at most two. 

Taking the appropriate limits in equation (3.32), we get the (easy) half of the 
desired result, namely 

(3.33) 

For the second half, we will produce a connection between U and a+ (8,O) by using 
the correlation functions T!")" and the plating technique of proposition 3.4. Let E be 
some number no larger than s which is small enough to ensure that the points 
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u f ( 0 ,  + E )  and a+(s ,  & E )  are safely inside [0, I]'. If we cannot get away with E = S ,  

for future convenience we will choose an E which evenly divides s. 
As before, let us first do k iterations starting at the smallest scale so that [0, 112 is 

now covered with N" independent versions of the kth stage aerogel. The point U is in 
one of these squares, and (for b large) we may regard this square as being at the 
middle of the left side of a square of side E .  Exactly SJE squares of this type are what 
separate U from its goal at U + (0, s). At this level of the process, we can accomplish 
most of what we need at a probabilisticcost of essentially [ T $ p ;  what is lacking are 
some terms that will guarantee that the cells containing a and a + (0, s )  are actually 
part of the microscopic cluster. Furthermore, for the benefit of the rest of the 
argument below, we must take steps to ensure that the overall 'cluster' (the one 
consisting of squares of scale 

Given that all the above happens, we may work our way up through the remaining 
b iterations, guarding the cluster at each stage of the process as was done in the proof 
of proposition 3.4. When we are done, we have the estimate 

J T Chayes et a1 

is not overburdened with too many sites. 

r$+(constant) [T$P~" e-fN' e-BNb (3.34) 
from which a bound complementary to the inequality in equation (3.33) emerges after 

In light of what we have so far achieved, we may now dispense with all the 
previously defined symbols for asymptotic rates of decay of connections in favour of 
the unified notation Ut2. We will finish this section with a (somewhate anticlimatic) 
proof of the central result for this section 

a suitable limiting procedure. 0 

Theorem 3.5. Let Q>Q, and p<fc(Q).  The correlation lengths Er and are 
equivalent in the scaling sense. Explicitly, there are finite, positive constants Cand K 
such that 

51 
C+ K log 

while if 6 has been carefully chosen to satisfy (2N- 1)'"SN=6 e-N , then 

51 * E > .  
Furthermore, these lengths actually diverge as the phase boundary is approached (i.e. 
as P t PC). 

Proof. Our starting point is the pair of inequalities 

(3N")'G("'a 1 -Prob(BJ,.)2G'"). (3.35) 
The second is self-explanatory; the first follows from subadditivity of the measure, 
summing over all possible endpoints of the connection. If n= E*, the first (i.e. left) 
inequality in equation (3.35) and the a priori bound of proposition 3.2 immediately 
give 

(3.36) 

The complementary bound & > E 2  is proved by straightforward rescaling argu- 
ments that go back to [XI. Indeed, Prob(E,,,) a 1 - 6 and a little cutting and pasting 
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imply that Prob(Bw,,) > 1 - (2N-  1)6, which yields (making no use of the available 
help on the largest scale) 

P r o b ( B 3 , . + , ) ~ 1 - ( 2 N - 1 ) N 6 N = 1 - 6 e - N .  (3.37) 

Then, after a total of k iterations, 

Prob(B,,.+,) 1 - 6 e-N'. (3.38) 

Thus, in particular, we have 

Prob(B,,..+,)> 1-6 e-(N"'tS'51. (3.39) 

Combining (3.39) with the second inequality in (3.35) and taking logs and limits, we 
obtain the desired bound. 

It only remains to show that c1 (and hence also 5J diverges asp  f Po To this end, 
observe that when p a P C ,  Vn, Prob(B3..)<1-6; in essence this is just a recap- 
itulation of proposition 2.1. Indeed, if this condition fails, e.g. at p = PG for some n, 
we would find ourselves in the sol phase. What is worse is that for larger n's, we would 
find Prob(B,..) > 1 - 6 ,  and hence by continuity we could find an n and an ~ ( n )  such 
that Prob(B,,.) a 1 - 6 at Pc+ E ,  in direct violation of the definition of Pc(Q). 

Now let us consider the situation when p< PG. Since, at k e d  Q, Prob(B,,,) is a 
monotone function of p,  it follows that n* is also monotone in p. Hence 

either exists or is infinite. However, the preceding argument rules out a finite limit 
%*(Po)'. In particular, finite-volume continuity would tell us that at p = P G ,  
Prob(B3,..o)) is itself at least as large as 1 - 6 and we have just argued that this is 
impossible. 0 

4. Correlation length hounds 

In the preceding section, it was agreed that the correlation length was determined (or 
defined) by the number of scales that are required before vacant cracks can be 
observed with a reasonable probability. The phrase 'reasonable probability' is, of 
course, somewhat arbitrary; to a certain extent, this is deliberate. Indeed, as should 
be clear from the orchestration of theorem 3.5, the choice of 6 =  [e(ZN- l)]-N'(N-l) 
was for the aesthetic purpose of having no constants in the second inequality. It is, in 
fact, straightforward to showthat the choice of 6' = +6 is sufficient in the sense that 
if for some no, Prob(B,,,) > 1 - 6', then Prob(B3,.) will tend to zero exponentially fast 
in N". Of course, 6' isn't really any 'better' than the 6 we used in theorem 3.57. 
However, our proof below will exploit the fact that 6<6' (the result of a laborious 
calculation that we will not reproduce here) and the fact that the divergence 
established in theorem 3.5 holds with 6 replaced by 6'. Explicitly, at any point on the 
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phase boundary, Prob(E3.,)<1-6'. Hence, focusing attention on some (p, Q) with 
p<Po(Q),  in order that n be equal to n*(p. Q), the value of Prob(B,,.) must have 
changed by 8 - 6  (an amount of order unity) in the interval P c - p .  

In [12] and [U], useful bounds on the rates of change for probabilities of events 
defined in finite volumes were derived. The relevant version is: 

J T Chayes et a1 

Theorem 4.1 [12]. Let A denote an event which depends on the outcomes of a total 
of I A I < m identical and independently distributed Bernoulli random variables of 
densitype(0,l). Then 

with C(p)=[ l /p( l  -p)]"'. 

where 'A' itself is a random variable. 
After a moment's thought, it is seen that the generalization needed here is to cases 

Pruposifiurz 4.2. Let ZM denote the set of the first M positive integers (where, for 
simplicity, we assume M< m) and let q denote some k e d  probability measure on the 
collection of subsets of Zw If A c & ,  let (Xjl j e  A) denote a collection of independent 
Bernoulli random variables where, for each j ,  Prob(C,= 1)=p for some p e ( 0 , l ) .  
Then, for any event A, 

where /AI denotes the size of A and C(p) is the constant in theorem 4.1. 

Proof. We may express Prob(A) as a sum over conditional probabilities: 

Prob(A) =E Prob(A)Prob(AIA). 
A 

If o c A is a configuration of the Bernoulli variables, we may write 

Prob(A I A) = E Prob(w)QA(o) 
0 

(4.1) 
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where b(o) is the indicator for the event A. 
We use the explicit formula for the Bernoulli distribution: 

Prob(w) =pl"i(l -p)lA1-lml (4.3) 

(where 1 0 1  -E is the size of w) to obtain 

(4.4) 

Taking absolute values, we employ the triangle and Holder inequalities to obtain 

where the preceding calculation has been expedited by the observation that pl AI is 
the conditional expectation of IwI. The desired result is immediately obtained by 
multiplying both sides of equation (4.5) by Prob(A) and summing over A. 

Remark. In cases when M = m , it is not particularly difficult to extend proposition 4.2 
provided that all terms are well-defined. 

Our princial result is a straightforward application of this proposition: 

Theorem 4.3. Let Q>Q, and p<PG(Q). Then there is a positive, Iinite constant A 
such that 

5dp. Q) > A  I PG -P  

where 

Remark. The interpretation of dH as the Hausdorff dimension of the l i t  set of the 
Mandelbrot percolation process has been given in some detail in [ll]. 

Proof. Let n S 1 .  Let us use proposition 4.2 to estimate the rate of change of 
Prob(B3,.) as a function of p. The relevant Bernoulli variables are, of course, the 
single-cell occupation events that take place against the background of (three 
independent copies of (n - 1) iterations of) the Mandelbrot process with parameters 
N and Q. Thus, the number of available places (i.e. 'IAP) is distributed according to 
the sum of three independent branching processes that enjoy a mean of QN'progeny. 
Explicitly, if we denote these objects as ZY-', Zl-' and Z;-' respectively, it is seen 
that the number of available sites is distributed as N'(Z?-'+Z;-*+Z;-'). Hence 
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As a bound, we will replace the average of (Z; -1+2; - '+Z; - ' )1 '2  with 
G[E";-')]''' = ~ ( Q N Z ) ( " - " " ~ .  

Focusing our attention, for once and all, on some fixed region abut Pc, we may 
ignore the variation of the prefactor and rewrite equation (4.6) as 

J T Chayes et a1 

with K a constant. But then, integrating fromp to Pc (ignoring the variation of K with 
p ) ,  and using the fact discussed earlier that Prob(B,,.)<1-6' along the phase 
boundary, we have 

Prob(B,,,)Sl -d '+K[N"]d~Z[F'c -pJ .  (4.8) 
Thus all ns that satisfy K[K"]"f ln [Pc-p ]<6 ' -6  must be smaller than n*(p) .  
Evidently, 

&3[(6'  - S)/K]"d.IPc-pJ-"dH (4.9) 
as stated above 0 

Similar bounds, with logarithmic modifications, may be obtained for E2 if we care 
to use the results of theorem 3.5. However, we will be satisfied with a concluding 
statement on the correlation length exponent: 

Corollary. If the critical index v ex ts, even in the sense of 

then v>2/d,. 

Appendix 

Here we prove the geometrical result needed in the proof of proposition 3.4 (see 
equation (3.28)). 

Theorem A.I.  Let K c Z Z  denote a connected set of size IK I with O E  K. Consider a 
tiling of Z? by squares of linear dimension N a 2 .  Let IK'I denote the number of 
distinct tiles which have non-zero intersection with the cluster K. Then for all K with 
IK I sufficiently large, there is a constant f<l such that 

IK'l G f  IK I. 
Remark. There is little doubt that this result- probably proved in greater generality 
and with better constants-has appeared somewhere in the literature. However, the 
authors have proved unequal to the task of divining the precise location of such a 

T In our case, this final bound OCCUIS without any significant loss since, for nS I, the qkntities Z:, have, in 
the exponential sense, sharply peaked distributions. One of the authors (LC) would Like to thank T Liggett 
for an enjoyable afternoon discussing this topic, 

theorem. ' , I . /  , 
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Proof. Let us partition the tiling of E’ (itself a realization of Z’) into nine independent 
sublattices which are labelled Green and ‘coloured‘ C& . . . , C, (figure 4). We will 
assume that Kis of sufficient size to have non-zero overlap with at least two tiles from 
one of the sublattices. We will further assume, with no loss of generality, that the 
sublattice which contributes the most tiles to the covering of K is the Green one. 

Let us consider, then, those Green tiles which intersect the cluster K. Each such 
tile is surrounded by an annulus composed of all the other coloured tiles. 
Furthermore, the annuli surrounding the distinct Green tiles are disjoint. We claim 
that in every annulus surrounding a Green tile which has been used in the covering, at 
least one of the tiles will contain more than N / 2  sites of the cluster K .  

Indeed, in order that some site in a given Green tile be connected to the ‘rest of K’ 
(e.g. another Green tile), it follows that K must include a connected path running 
between the inner and outer boundaries of the annulus. This path, in turn, must cross 
one of the four (overlapping) 3 x 1 rectangles, e.g. the rectangle consisting of riles 
coloured C, C, and q. If this latter portion of the path connects the boxes of all three 
colours, it is seen that the middle box has been used on at least N occasions. If only 
one box is used, the result is equally obvious. Finally, if two boxes are used, at least 
one of them must contain a chain of half its breadth, otherwise the path will not reach 
across. With somewhat more precision, ( N +  1)/2 is the minimum requirement if N is 
odd and at least N / 2 +  1 sites are necessary when N is even. To simplify the remainder 
of this proof, we will henceforth assume that N is even. 

Let g, c, . . . , c, denote the number of sites in K which end up in the Green, 
G, . . . , C, coloured tiles, and let G,  CB . . . , C,  denote the number of tiles of the 
assorted colours used in the covering. Associated with each of the G Green riles is a 
(possibly non-unique) constitutent of the appropriate annulus which has more (or as 
many) sites of K as does any other member of the annulus. Let ak denote the fraction 
of times that the colour Ck is awarded this dubious distinction. Thus 

k 

Knowing that each of these ‘winners’ contain at least N/2+ 1 sites of K ,  it is seen that 
we may estimate 

C i s  ajCi+ (ci- [ N / 2 +  l ] a j C i )  = ci- N/2aiCi ( A 4  

1 

T 
N - 

Fignro4. A tiling of Z2. 
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which follows from (crudely) bounding the number of ‘non-winning tiles’ by the 
number of sites in K which are in ‘non-winning tiles’. Equation (A.2) may be 
supplemented with the obvious bound 

J T Chayes et a1 

G Sg. 

Adding up the left and right hand sides of the above two equations, we obtain 

(‘4.3) 

Since G 2 (4) I K I, the desired result has been established with f= [1+ N/18]-’. When 
N is odd, the constant f is given by the same formula as above with N replaced by 
N - I .  0 
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